Naissance des oscillations dans les instruments de type clarinette à paramètre de contrôle variable

Baptiste Bergeot

Post-Doctorant à l'École Centrale Marseille (LMA)

Travaux de thèse (LAUM), dirigée par :

André Almeida, Christophe Vergez et Bruno Gazengel

12 Novembre 2013

Sommaire

Introduction

- 2 État de l'art dans le domaine de l'acoustique musicale
- 3 Observations sur des systèmes maîtrisés
- 4 Étude analytique du cas dynamique
- 5 Conclusion

Contexte général

Projet ANR SDNS-AIMV

Systèmes Dynamiques Non Stationnaires - Application aux Instruments de Musique à Vent

Étude des transitoires d'attaque dans les clarinettes

Contexte général

Projet ANR SDNS-AIMV

Systèmes Dynamiques Non Stationnaires - Application aux Instruments de Musique à Vent

Étude des transitoires d'attaque dans les clarinettes

Figure : Exercice d'entraînement joué à la clarinette par P.A. Taillard sur un bec instrumenté (SDNS-AIMV). Phrase musicale complète.

Contexte général

Projet ANR SDNS-AIMV

Systèmes Dynamiques Non Stationnaires - Application aux Instruments de Musique à Vent

Étude des transitoires d'attaque dans les clarinettes

Figure : Exercice d'entraînement joué à la clarinette par P.A. Taillard sur un bec instrumenté (SDNS-AIMV). Phrase musicale complète.

Description de l'attaque

Figure : Exercice d'entraînement joué à la clarinette par P.A. Taillard sur un bec instrumenté (SDNS-AIMV). Description de l'attaque.

Transitoire d'attaque

Figure : Exercice d'entraînement joué à la clarinette. Début et fin du transitoire d'attaque.

Transitoire d'attaque :

- \Rightarrow **Début** : moment où la pression dans la bouche commence à augmenter;
- \Rightarrow Fin : quand le régime établi sur la pression dans le bec est atteint.

 \Rightarrow la pression dans sa bouche;

- \Rightarrow la pression dans sa bouche;
- ⇒ la force d'appui de sa lèvre sur l'anche;

- \Rightarrow la pression dans sa bouche;
- ⇒ la force d'appui de sa lèvre sur l'anche;
- \Rightarrow conduit vocal;

- \Rightarrow la pression dans sa bouche;
- ⇒ la force d'appui de sa lèvre sur l'anche;
- \Rightarrow conduit vocal;
- ⇒ l'ouverture du canal d'anche avec sa langue;

- \Rightarrow la pression dans sa bouche;
- ⇒ la force d'appui de sa lèvre sur l'anche;
- \Rightarrow conduit vocal;
- ⇒ l'ouverture du canal d'anche avec sa langue;

⇒ ..

- \Rightarrow la pression dans sa bouche;
- ⇒ la force d'appui de sa lèvre sur l'anche;
- \Rightarrow conduit vocal;
- ⇒ l'ouverture du canal d'anche avec sa langue;

⇒ .

Paramètres de contrôle

∜

Geste instrumental

La clarinette : un instrument auto-oscillant

[Mc Intyre et al., On the oscillation of musical intruments, JASA, 1983.]

On s'intéresse à l'influence de la variation de la pression dans la bouche sur la naissance des auto-oscillations (observées dans le bec.)

On s'intéresse à l'influence de la variation de la pression dans la bouche sur la naissance des auto-oscillations (observées dans le bec.)

Réduction du domaine d'étude :

Réduction du domaine d'étude :

 \Rightarrow On ne s'intéresse qu'à la naissance des oscillations. Pas à la saturation;

 $\Rightarrow\,$ Pression dans la bouche variable, les autres paramètres de contrôle sont constants ;

Introduction

- ⇒ Pression dans la bouche variable, les autres paramètres de contrôle sont constants;
- \Rightarrow Profil idéal pour la pression dans la bouche :
 - Phase "dynamique" : la pression dans la bouche augmente linéairement.
 - Phase "statique" : la pression dans la bouche constante.

Introduction

- ⇒ Pression dans la bouche variable, les autres paramètres de contrôle sont constants;
- \Rightarrow Profil idéal pour la pression dans la bouche :
 - Phase "dynamique" : la pression dans la bouche augmente linéairement.
 - Phase "statique" : la pression dans la bouche constante.

Vocabulaire

- ... "dynamique" : pression dans la bouche variable
- .. "statique" : pression dans la bouche constante

Phase "Statique" :

- \Rightarrow Littérature importante en physique des instruments de musique;
- \Rightarrow Comportement de l'instrument bien connu.

Phase "Statique" :

- \Rightarrow Littérature importante en physique des instruments de musique;
- \Rightarrow Comportement de l'instrument bien connu.

Enveloppe du son

⇒ Descripteur de la naissance des oscillations :

Seuil d'oscillation dynamique

Définition : valeur de la pression dans la bouche après laquelle une seuil sur l'amplitude du son (arbitrairement défini) est dépassé

 $\Rightarrow \text{ Influence de } a \text{ et } b \text{ sur le seuil} \\ \text{d'oscillation dynamique.}$

Sommaire

Introduction

2 État de l'art dans le domaine de l'acoustique musicale

- Modèle de clarinette dit de "Raman"
- Comportement "statique" du modèle
- Comportement "dynamique" du modèle

Observations sur des systèmes maîtrisés

- Mesure sur bouche artificielle
- Simulations numériques du modèle de "Raman"

Étude analytique du cas dynamique

- La théorie de la bifurcation dynamique
- La courbe invariante
- Prédiction de l'enveloppe

5 Conclusion

Sommaire

1 Introduction

État de l'art dans le domaine de l'acoustique musicale

- Modèle de clarinette dit de "Raman"
- Comportement "statique" du modèle
- Comportement "dynamique" du modèle

3 Observations sur des systèmes maîtrisés

4 Étude analytique du cas dynamique

5 Conclusion

Remarque : utilisation de variables adimensionnées [**Chaigne & Kergomard**, "Acoustique de instruments de musique", Chap. 9, 2008]

Le modèle dit "de Raman" [Chaigne & Kergomard, Chap. 9, 2008]

$Clarinette \equiv r\acute{e}sonateur \ cylindrique$

Le modèle dit "de Raman" [Chaigne & Kergomard, Chap. 9, 2008]

Clarinette \equiv résonateur cylindrique

 \Rightarrow Propagation d'ondes planes : Représentation en onde aller p^+ et onde retour p^-

Le modèle dit "de Raman" [Chaigne & Kergomard, Chap. 9, 2008]

Clarinette = résonateur cylindrique

 \Rightarrow Propagation d'ondes planes : Représentation en onde aller p^+ et onde retour p^-

 \Rightarrow **C.L.1** : Conditions à la limite à l'extrémité (x = L) : Réflexion totale à l'extrémité d'un tube ouvert :

À l'extrémité ;
$$x = L$$
 $p^{-}(t, L) = -p^{+}(t, L)$

Au niveau du bec; x = 0 $p^-(t,0) = -\lambda p^+(t-\tau,0)$

- τ : durée d'un aller-retour de l'onde dans le résonateur.
- λ : paramètre de pertes : constant pour une longueur donnée du résonateur

⇒ **C.L.2** : Conditions à la limite au niveau du bec (x=0) : Non linéaire (hydrodynamique de l'écoulement à l'entrée du bec : $u = F(\gamma - p)$ par Bernoulli)

$$\{p; u\} \qquad \qquad \{p^+; p^-\}$$

Bernoulli | u(t, 0)

$$p(p) = F(\gamma - p(t, 0)) \mid p^+(t, 0) = G(-p^-(t, 0))$$

Figure : Fonction *G*. Effet de la variation de γ .

Expression analytique de G: [Taillard et al., "Iterated maps for clarinet-like systems", *Nonlinear dynamics*, 2010]

C.L.1 et C.L.2 $\Longrightarrow p^+(t,0) = G\left(\lambda p^+(t-\tau,0)\right)$

C.L.1 et **C.L.2** \Longrightarrow $p^+(t,0) = G\left(\lambda p^+(t-\tau,0)\right)$

Notation :
$$p^+(n\tau, 0) = p_n^+$$
 et $G(\lambda x) = f(x)$.

Le système est décrit par une **carte itérée** : $p_n^+ = f(p_{n-1}^+)$ Paramètre de contrôle γ [Maganza et al., *Europhysics Letters*, 1986] **C.L.1** et **C.L.2** \Longrightarrow $p^+(t,0) = G\left(\lambda p^+(t-\tau,0)\right)$

Notation :
$$p^+(n\tau, 0) = p_n^+$$
 et $G(\lambda x) = f(x)$.

Le système est décrit par une **carte itérée** : $p_n^+ = f(p_{n-1}^+)$ Paramètre de contrôle γ [Maganza et al., *Europhysics Letters*, 1986]

Modèle sans pertes : $\lambda = 1$

C.L.1 et **C.L.2**
$$\Longrightarrow$$
 $p^+(t,0) = G\left(\lambda p^+(t-\tau,0)\right)$

Notation :
$$p^+(n\tau, 0) = p_n^+$$
 et $G(\lambda x) = f(x)$.

Le système est décrit par une **carte itérée** : $p_n^+ = f(p_{n-1}^+)$ Paramètre de contrôle γ [Maganza et al., *Europhysics Letters*, 1986]

Modèle sans pertes : $\lambda = 1$

Figure : Résolution graphique de

 $p_n^+ = f(p_{n-1}^+)$

Fonction f

--- Indentité

Étude "statique" : comportement du modèle quand γ est constant

Seuil d'oscillation statique

[Feigenbaum, J. Stat. Phy., 1979] [Dalmont et al., JASA, 2005.] [Taillard et al., Nonlinear dynam., 2010]
Étude "statique" : comportement du modèle quand γ est constant

Seuil d'oscillation statique

[Feigenbaum, J. Stat. Phy., 1979] [Dalmont et al., JASA, 2005.] [Taillard et al., Nonlinear dynam., 2010]

Régime établi non oscillant

Étude "statique" : comportement du modèle quand γ est constant

Seuil d'oscillation statique

[Feigenbaum, J. Stat. Phy., 1979] [Dalmont et al., JASA, 2005.] [Taillard et al., Nonlinear dynam., 2010]

Enveloppe au début du transitoire, stabilité du point fixe de f et seuil d'oscillation statique

Linéarisation de la fonction d'itération f autour de son point fixe p^{+*}

$$\Rightarrow$$
 L'écart au point $w_n = p_n^+ - p^{+*}$

 $w_n \approx w_0 \left[f'\left(p^{+*}\right) \right]^n$.

•
$$|f'(p^{+*})| < 1$$
 : p_n^+ décroit exponentiellement vers p^{+*} ;
• $|f'(p^{+*})| > 1$: p_n^+ s'écarte exponentiellement de p^{+*} .

- \Rightarrow Condition de stabilité du point fixe : $\left|f'\left(p^{+*}\right)\right| < 1$
- ⇒ Seuil d'oscillation statique γ_{st} : valeur de γ solution de la condition de stabilité du point fixe.

Diagramme de bifurcation "statique"

- \Rightarrow Représente l'amplitude du régime établi de p^+ en fonction de γ .
- $\Rightarrow~$ Obtenu en choisissant une valeur de γ et en laissant le système atteindre son régime établi ;
- \Rightarrow Opération répétée pour chaque valeur γ .

Figure : Diagramme de bifurcation "statique" du modèle sans pertes.

- γ_{st} : Seuil d'oscillation statique
- - : courbe des points fixes de
 f : p^{+*}(γ).

Comportement "dynamique" du modèle dans la littérature

- ⇒ (c) Simulation temporelle du modèle de "Raman" avec variation linéaire de la pression dans la bouche.
- \Rightarrow (a) Amplitude de la pression dans le bec vs. la pression dans la bouche.

Diagramme de bifurcation "dynamique"

⇒ P_{thup} : "threshold of oscillation for increasing pressure".

Seuil d'oscillation "dynamique"

Observations :

- \Rightarrow Seuil statique < Seuil dynamique
- $\Rightarrow \text{ Variation lente de la pression dans la} \\ \text{bouche}: \text{Seuil dynamique} \rightarrow \text{Seuil} \\ \text{statique} \\ \end{cases}$

Sommaire

Introduction

2 État de l'art dans le domaine de l'acoustique musicale

3 Observations sur des systèmes maîtrisés

- Mesure sur bouche artificielle
- Simulations numériques du modèle de "Raman"

4 Étude analytique du cas dynamique

5 Conclusion

Dispositif expérimental

Bouche artificielle asservie en pression d'alimentation

Clarinette de laboratoire

Mesure simultanée de :

 P_m : pression dans la bouche; P: pression dans le bec; U: débit créé par $P_m - P$.

[Bergeot et al., "Response of a artificially blown clarinet to different blowing pressure profile", *JASA*, 2013.]

Description de l'expérience

k: pente de $P_m(t)$ $k_1 < k_2 < k_3 < k_4 < k_5 < k_6.$

k: pente de $P_m(t)$ $k_1 < k_2 < k_3 < k_4 < k_5 < k_6$.

: positions des seuils d'oscillation dynamiques expérimentaux.

Observations :

⇒ Seuil d'oscillation dynamique augmente quand k augmente.

k: pente de $P_m(t)$ $k_1 < k_2 < k_3 < k_4 < k_5 < k_6.$

Observations :

 $\Rightarrow \text{ Seuil d'oscillation dynamique} \\ \text{ augmente quand } k \text{ augmente.} \\$

k: pente de $P_m(t)$ $k_1 < k_2 < k_3 < k_4 < k_5 < k_6.$

Observations :

 $\Rightarrow \text{ Seuil d'oscillation dynamique} \\ \text{ augmente quand } k \text{ augmente.} \\$

 ⇒ Seuil d'oscillation dynamique (mesuré en montée)
 supérieur au
 Seuil d'extinction (mesurée en descente)

k: pente de $P_m(t)$ $k_1 < k_2 < k_3 < k_4 < k_5 < k_6.$

Observations :

- ⇒ Seuil d'oscillation dynamique augmente quand k augmente.
- ⇒ Seuil d'oscillation dynamique (mesuré en montée)
 supérieur au
 Seuil d'extinction (mesurée en descente)
- ⇒ [Dalmont et al., JASA, 2007.]; Seuil d'oscillation d'extinction proche du Seuil d'oscillation statique théorique;

Comportement similaire du modèle de "Raman"

Expériences

Simulations :

- \Rightarrow Extraction des paramètres à partir de la mesure du débit entrant U(t);
- Effectuée avec les profils mesurés de pression dans la bouche. \Rightarrow

Propriétés du seuil dynamique

Variation linéaire de γ :

$$\gamma_n = \epsilon n + \gamma_0$$

 γ_{st} : seuil d'oscillation statique

 γ_{dt}^{num} : seuil d'oscillation dynamique "numérique".

Calculé sur les simulations numériques du modèle de "Raman".

La dépendance au bruit

Illustration sur des simulations effectuées à précision finie

La dépendance au bruit

Illustration sur des simulations effectuées à précision finie

Précision :

- ⇒ Nombre de chiffres significatifs utilisés par l'ordinateur;
- ⇒ Contrôlable avec *mpmath* (Pyhton)

[Bergeot et al., "Prediction of ... blowing pressure : influence of noise", *Nonlinear Dynam.*, 2013]

 ${\sf Pr\acute{e}cision\ finie} \equiv {\sf bruit\ blanc\ additif}$

Exemple :

Précision = 15 \iff Bruit blanc $\sigma = 10^{-15}$

La dépendance au bruit

Illustration sur des simulations effectuées à précision finie

Influence du paramètre de vitesse d'augmentation de γ

 γ_{dt}^{num} vs. ϵ pour plusieurs précisions ($\gamma_0 = 0$)

 $\mathsf{Pr\acute{e}cision} = 5000 \Longleftrightarrow \mathsf{cas} \mathsf{ id\acute{e}al} \mathsf{ sans} \mathsf{ bruit}$

Influence du paramètre de vitesse d'augmentation de γ

 γ_{dt}^{num} vs. ϵ pour plusieurs précisions ($\gamma_0 = 0$)

 $Précision = 5000 \iff cas idéal sans bruit$

Deux régimes de fonctionnement :

- ⇒ Régime Dépendant du Bruit (RDB);
- \Rightarrow Régime Indépendant du Bruit (RIB).

Influence du paramètre de vitesse d'augmentation de γ

 γ_{dt}^{num} vs. ϵ pour plusieurs précisions ($\gamma_0 = 0$)

 $Précision = 5000 \iff cas idéal sans bruit$

Deux régimes de fonctionnement :

- \Rightarrow Régime Dépendant du Bruit (RDB);
- \Rightarrow Régime Indépendant du Bruit (RIB).

Propriété du seuil dynamique d'oscillation :

- $\Rightarrow \ \mathsf{RDB}: \gamma_{dt}^{\textit{num}} \text{ augmente avec } \epsilon \text{ ;}$
- \Rightarrow RIB : γ_{dt}^{num} "indépendant" de ϵ ;

Influence de la valeur initiale de γ

 γ_{dt}^{num} vs. γ_0 pour plusieurs précisions ($\epsilon = 3 \cdot 10^{-4}$)

 γ_{dt}^{num} vs. γ_0 pour plusieurs précisions ($\epsilon = 3 \cdot 10^{-4}$)

Propriété du seuil dynamique d'oscillation :

- \Rightarrow RDB : γ_{dt}^{num} indépendant de γ_0 ;
- \Rightarrow RIB : γ_{dt}^{num} diminue avec γ_0 ;

Résumé des observations

⇒ Expériences & Simulations du modèle de "Raman" :

• Seuil dynamique numérique et expérimental > Seuil statique

Résumé des observations

⇒ Expériences & Simulations du modèle de "Raman" :

 Seuil dynamique numérique et expérimental > Seuil statique

\Rightarrow Simulations : Propriétés de $\gamma_{dt}^{num} \Longrightarrow$ 2 régimes

- Régime dépendant du bruit
- Régime Indépendant du bruit

Sommaire

Introduction

- 2 État de l'art dans le domaine de l'acoustique musicale
- 3 Observations sur des systèmes maîtrisés

4 Étude analytique du cas dynamique

- La théorie de la bifurcation dynamique
- La courbe invariante
- Prédiction de l'enveloppe

5 Conclusion

Équations du système quand γ augmente linéairement

- \Rightarrow La variation de γ est linéaire : $\gamma_n = \epsilon n + \gamma_0$ ou $\gamma_n = \gamma_{n-1} + \epsilon$
- \Rightarrow Le paramètre γ varie lentement : $\epsilon \ll 1$.

Cas Statique

 $p_n^+ = f(p_{n-1}^+) \implies$

Cas Dynamique

$$\begin{cases} p_n^+ = f\left(p_{n-1}^+, \gamma_n\right)\\ \gamma_n = \gamma_{n-1} + \epsilon \end{cases}$$

Équations du système quand γ augmente linéairement

- \Rightarrow La variation de γ est linéaire : $\gamma_n = \epsilon n + \gamma_0$ ou $\gamma_n = \gamma_{n-1} + \epsilon$
- \Rightarrow Le paramètre γ varie lentement : $\epsilon \ll 1$.

Étude du système "dynamique" dans le cadre de la **théorie de la bifurcation** dynamique :

Seuil dynamique > Seuil statique : Retard à la bifurcation

[Baesens, "Slow sweep through a period-doubling cascade : Delayed bifurcation and renormalisation", *Physica D*, 1991.]

Référence pour le calcul de l'enveloppe

Cas statique

- \Rightarrow Référence \equiv point fixe p^{+*}
- ⇒ Linéarisation du système autour de son point fixe p^{+*} ⇒ Expression de $w = p^+ p^{+*}$ au début du transitoire (naissance des oscillations) :

 $w_n \approx w_0 \left[f'\left(p^{+*}\right) \right]^n$.

 \Rightarrow Point fixe p^{+*} : **définition** :

$$p^{+*} = f\left(p^{+*}\right)$$

Si le système est initialisé précisément sur le pont fixe, il y reste indéfiniment

Cas dynamique

$$\begin{cases} p_n^+ = f\left(p_{n-1}^+, \gamma_n\right)\\ \gamma_n = \gamma_{n-1} + \epsilon \end{cases}$$

Quelle référence pour le calcul de l'enveloppe?

 \Rightarrow Référence \equiv **courbe invariante** $\phi_{\epsilon}(\gamma)$.

Si le système est initialisé précisément sur la courbe invariante, il y reste indéfiniment :

$$p_{n-1}^+ = \phi_\epsilon(\gamma_{n-1}) \Longrightarrow$$
 Système dynamique $\Longrightarrow p_n^+ = \phi_\epsilon(\gamma_n)$

 $\Rightarrow \text{ La courbe invariante } \phi_{\epsilon} \text{ doit satisfaire : } \phi_{\epsilon}(\gamma) = f(\phi_{\epsilon}(\gamma - \epsilon), \gamma)$

Remarque : En dynamique la courbe des points fixes $p^{+*}(\gamma)$ n'est plus la courbe invariante.

⇒ Courbe invariante ϕ_{ϵ} : $\phi_{\epsilon}(\gamma) = f(\phi_{\epsilon}(\gamma - \epsilon), \gamma)$ ⇒ pas de solution exacte ⇒ solution approchée par méthode perturbative .

⇒ Linéarisation du système autour de la courbe invariante ϕ_{ϵ} ⇒ Expression analytique \hat{w} de l'écart à la courbe invariante $p^{+} - \phi(\gamma)$

 $\Rightarrow \hat{w}$: prédiction du seuil d'oscillation dynamique.

Système sans bruit (Déterministe)
$$\begin{cases} p_n^+ = f\left(p_{n-1}^+, \gamma_n\right)\\ \gamma_n = \gamma_{n-1} + \epsilon, \end{cases}$$

Système avec bruit (Stochastique) $\begin{cases} p_n^+ = f\left(p_{n-1}^+, \gamma_n\right) + \xi_n\\ \gamma_n = \gamma_{n-1} + \epsilon, \end{cases}$

 $\pmb{\xi}$: bruit blanc de moyenne nulle et d'amplitude σ

Prise en compte du bruit dans le modèle

Système sans bruit (Déterministe)
$$\begin{cases} p_n^+ = f\left(p_{n-1}^+, \gamma_n\right)\\ \gamma_n = \gamma_{n-1} + \epsilon, \end{cases}$$

Système avec bruit (Stochastique) $\begin{cases} p_n^+ = f\left(p_{n-1}^+, \gamma_n\right) + \xi_n\\ \gamma_n = \gamma_{n-1} + \epsilon, \end{cases}$

- $\pmb{\xi}$: bruit blanc de moyenne nulle et d'amplitude σ
- $\Rightarrow \ \ {\rm Linéarisation} \ \ {\rm du} \ \ {\rm "système} \ \ {\rm avec} \ \ {\rm bruit"} \\ {\rm autour} \ \ {\rm de} \ \phi_\epsilon \Rightarrow {\rm Expression} \ \ {\rm de} \ \ \hat w_n$

$$\hat{w}_n = \sqrt{\underbrace{A_n}_{\text{RIB}} + \underbrace{B_n}_{\text{RDB}}}$$

- \Rightarrow A_n décrit le Régime Indépendant du Bruit;
- $\Rightarrow B_n$ décrit le Régime Dépendant du Bruit.

Prise en compte du bruit dans le modèle

Système sans bruit (Déterministe)
$$\begin{cases} p_n^+ = f\left(p_{n-1}^+, \gamma_n\right)\\ \gamma_n = \gamma_{n-1} + \epsilon, \end{cases}$$

- $\pmb{\xi}$: bruit blanc de moyenne nulle et d'amplitude σ
- $\Rightarrow \mbox{ Linéarisation du "système avec bruit"} autour de \phi_{\epsilon} \Rightarrow \mbox{ Expression de } \hat{w}_n$

$$\hat{w}_n = \sqrt{\underbrace{A_n}_{\text{RIB}} + \underbrace{B_n}_{\text{RDB}}}$$

 $\Rightarrow A_n \text{ décrit le Régime Indépendant du Bruit;}$ $\Rightarrow B_n \text{ décrit le Régime Dépendant du Bruit.}$

 $\Rightarrow A_n \ll B_n : \text{système évolue en RDB};$ $\Rightarrow A_n \gg B_n : \text{système évolue en RIB}.$

Enveloppe pour le Régime Indépendant du Bruit

Traitement du terme $A_n \Rightarrow$ expression théorique du seuil dynamique noté γ_{dt}^{th}

Enveloppe pour le RIB

 $(A_n \gg B_n)$: $\hat{w}_n \approx \sqrt{A_n} =$ $|\hat{w}_0| \exp \left[I(\gamma_n + \epsilon) - I(\gamma_0 + \epsilon) \right]$

[Bergeot et al., "Prediction of the dynamic oscillation threshold in a clarinet model with time-varying blowing pressure", *Nonlinear dynamics*, 2013.]

Enveloppe pour le Régime Indépendant du Bruit

Traitement du terme $A_n \Rightarrow$ expression théorique du seuil dynamique noté γ_{dt}^{th}

Enveloppe pour le RIB

 $I(\gamma)$: intégrale non calculable analytiquement.

[Bergeot et al., "Prediction of the dynamic oscillation threshold in a clarinet model with time-varying blowing pressure", *Nonlinear dynamics*, 2013.]
Traitement du terme B \Rightarrow expression théorique du seuil dynamique noté $\hat{\gamma}_{dt}^{th}$

Enveloppe pour le RDB $(A_n \ll B_n)$: $\hat{w}_n \approx \sqrt{B_n}$

 B_n : expression faisant intervenir l'intégrale I

Traitement du terme B \Rightarrow expression théorique du seuil dynamique noté $\hat{\gamma}_{dt}^{th}$

Enveloppe pour le RDB $(A_n \ll B_n)$: $\hat{w}_n \approx \sqrt{B_n}$

 B_n : expression faisant intervenir l'intégrale I

Simplification : Le bruit diminue le seuil d'oscillation dynamique. Développement limité à l'ordre 2 de *I* autour de $\gamma_{st} \implies I^{D.L.2}$.

Traitement du terme B \Rightarrow expression théorique du seuil dynamique noté $\hat{\gamma}_{dt}^{th}$

Enveloppe pour le RDB $(A_n \ll B_n)$: $\hat{w}_n \approx \sqrt{B_n}$

 B_n : expression faisant intervenir l'intégrale I

Simplification : Le bruit diminue le seuil d'oscillation dynamique. Développement limité à l'ordre 2 de *I* autour de $\gamma_{st} \implies I^{D.L.2}$.

$$\hat{w}_n \approx \sqrt{B_n} \approx \frac{\sigma}{\epsilon^{1/4}} \left(\frac{\pi}{K}\right)^{1/4} \exp\left[I^{D.L.2}\left(\gamma_n\right) - I^{D.L.2}\left(\gamma_{st}\right)\right]$$

Remarque : valable uniquement après γ_{st}

Traitement du terme B \Rightarrow expression théorique du seuil dynamique noté $\hat{\gamma}_{dt}^{th}$

Enveloppe pour le RDB $(A_n \ll B_n)$: $\hat{w}_n \approx \sqrt{B_n}$

 B_n : expression faisant intervenir l'intégrale I

Simplification : Le bruit diminue le seuil d'oscillation dynamique. Développement limité à l'ordre 2 de *I* autour de $\gamma_{st} \implies I^{D.L.2}$.

$$\hat{w}_n \approx \sqrt{B_n} \approx \frac{\sigma}{\epsilon^{1/4}} \left(\frac{\pi}{K}\right)^{1/4} \exp\left[I^{D.L.2}\left(\gamma_n\right) - I^{D.L.2}\left(\gamma_{st}\right)\right]$$

Remarque : valable uniquement après γ_{st}

[Bergeot et al., "Prediction of the dynamic oscillation threshold in a clarinet model with time-varying blowing pressure : influence of noise", *Nonlinear dynam.*, 2013.]

Expression intermédiaire :

[2][Bergeot et al., "Estimation of the attack transient in a clarinet model with time-varying blowing pressure", *En cours d'écriture*, 2013.]

Comparaison entre les seuil d'oscillation dynamiques théoriques γ_{dt}^{th} (RID) et $\hat{\gamma}_{dt}^{th}$ (RDB) et le seuil dynamique numérique γ_{dt}^{num}

 $\mathsf{RIB}: A_n \Longrightarrow \gamma_{dt}^{th}$

 $\mathsf{RDB} : B_n : {\mathsf{Expr. App.}; \mathsf{Expr. Int.}} \Longrightarrow {\{\hat{\gamma}_{dt}^{th,1}; \hat{\gamma}_{dt}^{th,2}\}}$

Sommaire

Introduction

- 2 État de l'art dans le domaine de l'acoustique musicale
- 3 Observations sur des systèmes maîtrisés
- 4 Étude analytique du cas dynamique

5 Conclusion

- Point de départ : étude des transitoires d'attaque dans les clarinettes ;
- Focalisation sur l'influence de la variation de la pression dans la bouche sur la naissance des oscillations ⇒ Première étape importante;
- 1^{ère} Étape : Mise en évidence des phénomènes :

Notion de "seuil dynamique d'oscillation" :

- Réinteprétation de résultats anciens de l'acoustique musicale [Atig et al., 2004] ;
- Mesure du seuil statique : on comprend pourquoi il est si difficile de le mesurer en augmentant lentement la pression dans la bouche.
- 2^{nde} Étape : Expression analytique de l'enveloppe du son (étude "dynamique" du modèle de "Raman")
 - Utilisation des outils d'analyse de la théorie de la bifurcation dynamique;
 - La courbe invariante : un outil précieux.
- Enveloppe analytique \Rightarrow Prédiction du seuil d'oscillation dynamique :
 - Comparaison *quantitative* avec les simulations;
 - Comparaison qualitative avec l'expérience.

Merci de votre attention !

 \Rightarrow Email : baptiste.bergeot@centrale-marseille.fr

 \Rightarrow Articles et thèse disponibles sur HAL